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Abstract. The Thermohaline Circulation, which plays a crucial role in the
global climate, is a cycle of deep ocean due to the change in salinity and tem-
perature (i.e., density). The effects of non-Gaussian noise on the Stommel box
model for the Thermohaline Circulation are considered. The noise is repre-
sented by a non-Gaussian α-stable Lévy motion with 0 < α < 2. The α value
may be regarded as the index of non-Gaussianity. When α = 2, the α-stable
Lévy motion becomes the usual (Gaussian) Brownian motion.

Dynamical features of this stochastic model is examined by computing the
mean exit time for various α values. The mean exit time is simulated by numer-
ically solving a deterministic differential equation with nonlocal interactions. It
has been observed that some salinity difference levels remain in certain ranges
for longer times than other salinity difference levels, for different α values. This
indicates a lower variability for these salinity difference levels. Realizing that
it is the salinity differences that drive the thermohaline circulation, this lower
variability could mean a stable circulation, which may have further implications
for the global climate dynamics.

1. Introduction. The Thermohaline Circulation (THC), characterizing the circu-
lation of the deep ocean driven by the marine change of temperature and salinity,
plays an significant role on the global climate variability. A simple deterministic
box model was proposed by Stommel [1] in 1961, to examine some features of this
oceanic process [2]-[4].

However, the global oceanic system is affected by some random or uncertain
processes such as stochastic environment fluctuations and random input. There are
also other difficulties in including unrepresented mechanisms, uncertain observation,
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and unresolved scales in modeling and simulation of oceanic motions. It is desirable
to take stochastic or uncertain effects into account. Cessi [5] proposed a box model
of stochastically-forced thermohaline processes. Griffies et. al. [6] and Lohmann et.
al. [7] also considered Gaussian stochastic effects on simple models of THC. Our
aim in this paper is to discuss the impacts of the non-Gaussian noise on the THC.

We will consider a simple model for THC as a scalar stochastic differential equa-
tion (SDE) in the following form

dyt = f(yt)dt+ dLt, y0 = y, (1)

where f(y) is a deterministic vector field and Lt is a scalar non-Gaussian Lévy
motion.

Recall that a scalar Lévy motion {Lt}, in a probability space (Ω,F ,P), is char-
acterized by a drift parameter θ, a variance parameter d > 0 and a non-negative
Borel measure ν defined on (R,B(R)) and concentrated on R \ {0}. The so-called
Lévy jump measure ν satisfies the condition∫

R\{0}
min(z2, 1) ν(dz) < ∞. (2)

According to the Lévy-Khintchine formula [8], the characteristic function for Lt

is

EeiλLt = exp{iθλt− dt
λ2

2
+ t

∫
R\{0}

(eiλz − 1− iλzI|z|<1)ν(dz)}, (3)

where E is the expectation with respect to the probability measure P and IS is the
indicator function on the set S. The generator A0 for this Lévy motion Lt is

A0ϕ(y) = θϕ′(y) +
d

2
ϕ′′(y) +

∫
R\{0}

[ϕ(y + z)− ϕ(y)− I{|z|<1}zϕ
′(y))]ν(dz). (4)

Thus the generator A for yt in the stochastic differential equation (1) is

Aϕ(y)

=f(y)ϕ′(y) + θϕ′(y) +
d

2
ϕ′′(y) +

∫
R\{0}

[ϕ(y + z)− ϕ(y)− I{|z|<1}zϕ
′(y)]ν(dz).

(5)

The rest of this paper is organized as follows. In Section 2, we present a stochastic
Stommel model for characterizing some dynamical features of THC, which is a
stochastic differential equation with a symmetric α−stable Lévy motion. In Section
3, we compute the mean exit time (MET) by solving a differential-integral equation,
as the parameter α varies between 0 and 2. Numerical results and discussions are
described in Section 4.

2. Stochastic Stommel model of thermohaline circulation. A simple model
for the oceanic thermohaline circulation is Stommel’s box model, where the ocean
is described by two boxes, a low-latitude box with temperature Te and salinity Se,
and a high-latitude box with temperature Tp and salinity Sp. The two boxes are
interacted by tubes with a flux Ψ near the surface and at depth for heat exchanges
which have different volumes as shown in Figure 1.
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Figure 1. From Dijkstra ([17]) and Glendinning ([11]). Diagram
of the box model. One box is for the polar region (high latitude)
and the other box is for the equatorial region (low latitude).

Here we follow the presentation in [11, 12]. Define

Ψ = γ(αT (Te − Tp)− αS(Se − Sp)),

where αT and αS are respectively the thermal and haline expansivity coefficients.
The model assumes that heat is added to the polar or equatorial box at a rate
T a
p or T a

e respectively, from the atmosphere, and that salinity is increased at the
equator with rate Sa

e and decreased at the polar with rate Sa
p . Note that the bulk

exchanges between the boxes depend on the density gradient, and the dynamics of
the Stommel model depends on the meridional gradient of temperature and salinity.
The model equations are:

Ve

dTe

dt
= CT

e (T
a
e − Te) + |Ψ|(Tp − Te), (6)

Vp

dTp

dt
= CT

p (T
a
p − Tp) + |Ψ|(Te − Tp), (7)

Ve

dSe

dt
= CS

e (T
a
e − Se) + |Ψ|(Sp − Se), (8)

Vp

dSp

dt
= CS

e (T
a
p − Sp) + |Ψ|(Se − Sp). (9)

It is assumed that the relaxation rates for the temperature are equal and constant,
CT

e /Ve = CT
p /Vp , RT and similarly, CS

e /Ve = CS
p /Vp , RS .

The temperature difference T = Te − Tp and the salinity difference S = Se − Sp

are assumed to simplify the equations which can be combined into two differential
equations as follows

dT

dt
= RT [(T

a
e − T a

p )− T ]− 2|Ψ|T (
1

Ve

+
1

Vp

), (10)

dS

dt
= RS [(S

a
e − Sa

p )− S]− 2|Ψ|S(
1

Ve

+
1

Vp

). (11)

We set T a = T a
e − T a

p and Sa = Sa
e − Sa

p . Using the dimensionless variables
x = T/T a, y = αSS/αTT

a, and switching the time scale by τ = Rst, the equations
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(10) and (11) may be rewritten as

dx

dτ
=

RT

RS

(1− x)−A|x − y|x, (12)

dy

dτ
= ζ(s) − (1 +A|x− y|)y, (13)

in which

A =
γαTT

α

RS

(
1

Ve

+
1

Vp

)

and

ζ =
αSS

α

αTTα
.

Given a reasonable assumption RS � RT . Thus ε = RS/RT is small. Then we
have

ε
dx

dτ
= (1 − x)− εA|x− y|x, (14)

dy

dτ
= ζ − (1 +A|x− y|)y. (15)

As mentioned in [11, 12], Tihonvon and Fenichel’s theorem is applied here to reduce
the dynamics to the attracting close surface x = 1+o(ε). Then we obtain the leading
order equation of y

dy

dτ
= −(1 +A|1 − y|)y + ζ. (16)

For convenience, from now on we will still use t to denote τ . Due to the fluctuat-
ing external salinity inputs or the fluctuations in the freshwater flux, ζ is varying
following Sa and can be parameterized as mean part, denoted by ζ̄, and a noisy fluc-
tuating process dLt/dt. We thus have the following stochastic differential equation
(SDE)

dyt = f(yt)dt+ dLt, (17)

where f(y) = −(1 +A|1− y|)y + ζ̄.
For this stochastic Stommel model of THC, we use model parameters as esti-

mated by Marotzke, as shown in Table 1.

Furthermore, A is calculated as a constant parameter, A ' 5, and ζ̄(s) ' 1.018.
The stochastic equation above is now

dyt = [−(1 + 5|1− y|)y + 1.018]dt+ dLt.

In fact we will consider an important case of a symmetric α−stable Lévy motion
Lα
t (see definition in the next section):

dyt = [−(1 + 5|1− y|)y + 1.018]dt+ dLα
t . (18)

To quantify the impact of non-Gaussian noise on the box model, we will discuss the
mean exit time (MET) for the stochastic system (18) for the rest of this paper.
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Table 1. The parameters of box model. These parameters were
estimated by Marotzke in 1996.

Parameter Symbol Value

Box volume V 1×1014m3

Temperature rebound coefficient CT 3.17×10−6m3s−1

Salinity rebound coefficient CS 1.90×10−6m3s−1

Temperature dilatancy
coefficient

αT 1.5×10−4K−1

Salinity dilatancy coefficient αS 8×10−4K−1

Water transport coefficient γ 1×109m3s−1

Heat rate of equatorial T a
e 30◦C

Heat rate of polar T a
p 0◦C

3. Numerical schemes of mean exit time from a bounded domain. In this
section, we consider mean exit time (MET) of the stochastic Stommel model (18)
with a symmetric α-stable Lévy motion Lα

t , with the generating triplet (0, d, να).
The drift parameter θ is taken to be zero as it may be absorbed into the deterministic
vector field, variance d > 0 and the jump measure να(dz) = Cα

dz
|z|1+α , where Cα =

α
21−α

√
π

Γ( 1+α

2
)

Γ(1−α

2
) for 0 < α < 2. A few authors have studied asymptotic mean exit

time for stochastic systems with small α-stable Lévy noise [14, 16]. But here we
consider a numerical approach for MET in the case of noise of any magnitude.

Given an open bounded interval D, the mean exit time for a solution process of
SDE (1) starting at y ∈ D is defined as

u(y) , E inf{t ≥ 0 : yt(ω) /∈ D}.

As in [10, 18], the mean exit time u(y) satisfies the following differential-integral
equation:

Au(y) = −1, y ∈ D, (19)

u = 0, y ∈ Dc, (20)

where the generator A is

Au = f(y)u′(y) +
d

2
u′′(y) +

∫
R\{0}

[u(y + z)− u(y)− I{|z|<1}zu
′(y))]να(dz) (21)

and Dc = R \D is the complement set of D.
Then Eq. (21) becomes

d

2
u′′(y) + f(y)u′(y) + εCα

∫
R\{0}

u(y + z)− u(y)− I{|z|<1}zu
′(y))

|z|1+α
dz (22)

for y ∈ D and u = 0 for y ∈ Dc.
We choose D = (a, b) with a > 0 since y > 0. Translating Eq. (22) to a slightly
different form: for y ∈ (a, b)

d

2
u′′(y) + f(y)u′(y) + εCα

∫
R\{0}

u(y + z)− u(y)− I{|z|<δ}zu
′(y))

|z|1+α
dz = −1 (23)
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and for y /∈ (a, b), u(y) = 0.
The positive value of δ in (23) is chosen to depend on the value of y.
The following numerical scheme follows [18]. Because u vanishes outside (a,b), Eq.

(23) can be simplified by writing
∫
R
=

∫ a−y

−∞ +
∫ b−y

a−y
+
∫ +∞
b−y

,

d

2
u′′(y) + f(y)u′(y) +

εCα

α
[

1

(a− y)α
+

1

(b − y)α
]u(y)+

εCα

∫ b−y

a−y

u(y + z)− u(y)− I{|z|<δ}zu
′(y))

|z|1+α
dz = −1 (24)

for y ∈ (a, b); and u(y) = 0 for y 6∈ (a, b).
Since u is not smooth at the boundary points y = a, b, we rewrite Eq. (24) for
ensuring the smooth integrand as

d

2
u′′(y) + f(y)u′(y) +

1

α
[

1

(a− y)α
+

1

(b − y)α
]u(y)+

εCα

∫ a+y

a−y

u(y + z)− u(y)

|z|1+α
dy + εCα

∫ b+y

a+y

u(y + z)− u(y)− I{|z|<δ}zu
′(y))

|z|1+α
dz = −1

(25)

for y > b−a
2 , and

d

2
u′′(y) + f(y)u′(y) +

1

α
[

1

(a− y)α
+

1

(b − y)α
]u(y)+

εCα

∫ b−y

b+y

u(y + z)− u(y)

|z|1+α
dy + εCα

∫ b+y

a−y

u(y + z)− u(y)− I{|z|<δ}zu
′(y))

|z|1+α
dz = −1

(26)

for 0 < y < b−a
2 . We choose δ = min{|a− x|, |b− x|}.

Let us divide the interval [(3a-b)/2, (3b-a)/2] into 2(b−a)J subintervals and define
yj = jh for 3a−b

2 J≤j≤ 3b−a
2 J integer with h = 1/J . We denote the numerical

solution of u at yj by Uj and discretize the Eq. (25) with central difference for
derivatives and “punched- hole” trapezoidal rule

Uj−1 − 2Uj + Uj+1

h2

d

2
+ f(yj)

Uj+1 − Uj−1

2h
+

εCα

α
[

1

(a− yj)α
+

1

(b− yj)α
]Uj+

εCαh[

aJ+j∑
k=aJ−j

”
Uj+k − Uj

|yk|1+α
+ εCαh

bJ−j∑
k=aJ+j

”
Uj+k − Uj − (Uj+1 − Uj−1)yk/2h

|yk|1+α
] = −1

(27)

where j = ((b−a)/2)J, ((b−a)/2)J+1, ..., ((3b−a)/2)J−1. The modified summation
symbol

∑
” means that the quantities corresponding to the two end summation

indices are multiplied by 1/2.

Uj−1 − 2Uj + Uj+1

h2

d

2
+ f(y)

Uj+1 − Uj−1

2h
+

εCα

α
[

1

(a− yj)α
+

1

(b− yj)α
]Uj+

εCαh[

bJ−j∑
k=bJ+j

”
Uj+k − Uj

|yk|1+α
+ εCαh

bJ+j∑
k=aJ−j

”
Uj+k − Uj − (Uj+1 − Uj−1)yk/2h

|yk|1+α
] = −1

(28)
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where j = ((3a − b)/2)J + 1, ..., ((b − a)/2)J − 2, ((b − a)/2)J − 1. The bounded
condition is the value of Uj vanish if the index |j| ≥ J .

4. Results and discussions. Now we consider the mean exit time of the stochastic
Stommel model (18) proposed in Section 2 from various domain D and for various
α values.

Note that in the model (18), y ∼ Se − Sp, i.e., y is proportional to the salinity
(or density) difference between equatorial and polar regions in the oceans. Large y
values indicate large density differences. It is the density difference that drives the
thermohaline circulation. So large y values could lead to enhanced thermohaline
circulation. The salinity difference y evolves with time t. The mean exit time u(y),
for y ∈ D = (a, b), is the expected duration of time that the initial salinity difference
y will remain in the bounded range D = (a, b).

Case 1: D = (0.3, 0.9).
First, we consider the salinity difference y < 1 and take D = (0.3, 0.9). Figures
2–4 display the MET u(y) for various α values. When α = 0.1, the peak of MET
is about u = 0.0238 at y ≈ 0.4. This says that the initial salinity difference 0.4
will remain the longest time in the salinity difference range D = (0.3, 0.9). The
peak of u(y) increases with α, and reaches the largest value around α = 1.0, and
then decreases gradually for α > 1. Note that it takes longer time to escape from
(0.35, 0.45) for every α. This indicates that the salinity difference tends to remain
within the range (0.35, 0.45) for a longer time. For convenience, we say this is a
“salinity-stability” or say the salinity difference range (0.35, 0.45) is salinity-stable.
This stability is with respective to the ambient domain D.

Case 2: D = (1.3, 1.9).
When the salinity difference y > 1, how about the situation of u(y), MET from
the domain D = (1.3, 1.9)? The MET for various α values are in Figures 5–7. The
salinity difference range (1.35, 1.4) is salinity-stable, i.e., the salinity difference in
this range remain so for a longer time. Comparing with Case 1, the peak values of
u are smaller, although the domain D have the same length in both cases.

From Case 1 and Case 2, we see that there is a stable salinity difference range
for either y < 1 and y > 1.

Case 3: D = (0.4, 1.6).
Finally, we take the domain D = (0.4, 1.6) which covers both salinity differences
y < 1 and y > 1. Note that the term |1− y| in (18) depends on y > 1 or 0 < y < 1.
Figures 8–11 show the MET for various α values. Observe that the peak value of
MET increases with α. For all these tested α values, MET increases initially and
then decreases, and the turning point is near {y = 1}. The y = 1 is more stable
comparing with other salinity difference levels. In most of the domainD = (0.4, 1.6),
MET is relatively flat, indicating a low variability in salinity difference in the range
0.4 < y < 1.6.

In summary, we have considered a simple stochastic box model for THC. It is
described by a SDE with a α-stable Lévy motion. The α values, 0 < α < 2, may
be regarded as the index of non-Gaussianity. When α = 2, the α-stable Lévy mo-
tion becomes the usual (Gaussian) Brownian motion. We quantity some dynamical
features of this stochastic model by computing the mean exit time for various α
values and for different domain D. We have observed that some salinity difference
levels remain in certain ranges for longer times than other salinity difference levels,
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for different α values. This indicates a lower variability for these salinity differ-
ence levels. Realizing that it is the salinity differences that drive the thermohaline
circulation, this lower variability could mean a stable circulation, which may have
further implications for the global climate dynamics.
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Figure 2. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 0.1, escaping
from D = (0.3, 0.9).
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Figure 3. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.0, escaping
from D = (0.3, 0.9).
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Figure 4. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.9, escaping
from D = (0.3, 0.9).
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Figure 5. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 0.1, escaping
from D = (1.3, 1.9).
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Figure 6. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.0, escaping
from D = (1.3, 1.9).
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Figure 7. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.9, escaping
from D = (1.3, 1.9).
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Figure 8. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 0.1, escaping
from D = (0.4, 1.6).
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Figure 9. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 0.4, escaping
from D = (0.4, 1.6).
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Figure 10. Mean
exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.0, escaping
from D = (0.4, 1.6).
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exit time u(y) for
dyt = [−(1 + 5|1 −
y|)y+1.018]dt+dLα

t

at α = 1.5, escaping
from D = (0.4, 1.6).
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[8] D. Applebaum, “Lévy Processes and Stochastic Calculus,” Cambridge Studies in Advanced

Mathematics, 93, Cambridge University Press, Cambridge, 2004.
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