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ABSTRACT. The Thermohaline Circulation, which plays a crucial role in the
global climate, is a cycle of deep ocean due to the change in salinity and tem-
perature (i.e., density). The effects of non-Gaussian noise on the Stommel box
model for the Thermohaline Circulation are considered. The noise is repre-
sented by a non-Gaussian a-stable Lévy motion with 0 < a < 2. The o value
may be regarded as the index of non-Gaussianity. When a = 2, the a-stable
Lévy motion becomes the usual (Gaussian) Brownian motion.

Dynamical features of this stochastic model is examined by computing the
mean exit time for various « values. The mean exit time is simulated by numer-
ically solving a deterministic differential equation with nonlocal interactions. It
has been observed that some salinity difference levels remain in certain ranges
for longer times than other salinity difference levels, for different v values. This
indicates a lower variability for these salinity difference levels. Realizing that
it is the salinity differences that drive the thermohaline circulation, this lower
variability could mean a stable circulation, which may have further implications
for the global climate dynamics.

1. Inmtroduction. The Thermohaline Circulation (THC), characterizing the circu-
lation of the deep ocean driven by the marine change of temperature and salinity,
plays an significant role on the global climate variability. A simple deterministic
box model was proposed by Stommel [I] in 1961, to examine some features of this
oceanic process [2]-[4].

However, the global oceanic system is affected by some random or uncertain
processes such as stochastic environment fluctuations and random input. There are
also other difficulties in including unrepresented mechanisms, uncertain observation,
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and unresolved scales in modeling and simulation of oceanic motions. It is desirable
to take stochastic or uncertain effects into account. Cessi [5] proposed a box model
of stochastically-forced thermohaline processes. Griffies et. al. [6] and Lohmann et.
al. [7] also considered Gaussian stochastic effects on simple models of THC. Our
aim in this paper is to discuss the impacts of the non-Gaussian noise on the THC.

We will consider a simple model for THC as a scalar stochastic differential equa-
tion (SDE) in the following form

dy: = f(yr)dt + dLy, Yo =¥, (1)

where f(y) is a deterministic vector field and L; is a scalar non-Gaussian Lévy
motion.

Recall that a scalar Lévy motion {L;}, in a probability space (2, F,P), is char-
acterized by a drift parameter 6, a variance parameter d > 0 and a non-negative
Borel measure v defined on (R, B(R)) and concentrated on R\ {0}. The so-called
Lévy jump measure v satisfies the condition

/ min(z?%,1) v(dz) < oco. (2)
R\{0}

According to the Lévy-Khintchine formula [§], the characteristic function for L,
is
iAL . )\2 iz .
Ee" ™t = exp{if\t —dt— + ¢t (e =1 —iXzlj<1)v(d2)}, (3)
2 o

where E is the expectation with respect to the probability measure P and Ig is the
indicator function on the set S. The generator Ay for this Lévy motion L is

Aop(w) =09 W) + 50" @) + [ Ty +2) = 6(0) ~ Iy 2 W)= (0
R\{0}

Thus the generator A for y; in the stochastic differential equation () is

Ap(y)

=f()e' (y) +0¢ (y) + gsﬁ”(y) + / lo(y + 2) — @(y) — Ijz1<1y2¢ (y)]v(dz).
R\{0} -

The rest of this paper is organized as follows. In Section 2, we present a stochastic
Stommel model for characterizing some dynamical features of THC, which is a
stochastic differential equation with a symmetric a—stable Lévy motion. In Section
3, we compute the mean exit time (MET) by solving a differential-integral equation,
as the parameter o varies between 0 and 2. Numerical results and discussions are
described in Section 4.

2. Stochastic Stommel model of thermohaline circulation. A simple model
for the oceanic thermohaline circulation is Stommel’s box model, where the ocean
is described by two boxes, a low-latitude box with temperature T, and salinity S.,
and a high-latitude box with temperature 7}, and salinity S,. The two boxes are
interacted by tubes with a flux ¥ near the surface and at depth for heat exchanges
which have different volumes as shown in Figure 1.
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FIGURE 1. From Dijkstra ([I7]) and Glendinning ([I1]). Diagram
of the box model. One box is for the polar region (high latitude)
and the other box is for the equatorial region (low latitude).

Here we follow the presentation in [IT] [12]. Define
¥ =v(ar(Te = Tp) — as(Se — Sp)),

where ap and ag are respectively the thermal and haline expansivity coeflicients.
The model assumes that heat is added to the polar or equatorial box at a rate
T or T¢ respectively, from the atmosphere, and that salinity is increased at the
equator with rate S¢ and decreased at the polar with rate Sj. Note that the bulk
exchanges between the boxes depend on the density gradient, and the dynamics of
the Stommel model depends on the meridional gradient of temperature and salinity.
The model equations are:

dTe

Ve dt :CZ(T:_T6)+|\IJ|(TP_T6)= (6)
dTP T a

Vpﬁ :Cp (Tp _Tp)+|\l}|(Te_Tp)v (7)
ds. .

Ve dt :CeS(Te _Se)‘f'l\I’l(Sp_Se)a (8)
ds .

V;Dd—tp :CeS(Tp _Sp)+|\I’|(Se_Sp)' (9)

It is assumed that the relaxation rates for the temperature are equal and constant,
CL/Ve =CT )V, £ Ry and similarly, C5/V, = C5 /V, & Rs.

The temperature difference 7' = T, — T}, and the salinity difference S = S, — 5,
are assumed to simplify the equations which can be combined into two differential
equations as follows

T W 11
o = Rl = T5) = T] = 29T (5 + VP)’ (10)
ds 0 o 11

o = IS8 = 55) = 8] = 2[WIS(- + VP)' (11)

We set T = T — Ty and S* = S — Sp. Using the dimensionless variables
x=T/T% y=agS/arT®, and switching the time scale by 7 = R,t, the equations
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(I0) and (II) may be rewritten as

dr Rp
2 (1—2)= Alr — 12
dy
L= ()~ (1+ Al =y, (13)
-
in which
yarT® 1 1
e
Rs Vo 'V,
and
OéSSa
a OZTTO"

Given a reasonable assumption Rg < Rp. Thus ¢ = Rg/Rr is small. Then we
have

e— =(1—1z)—cAlx —y|z, (14)

—=(—-(1+ Az - . 15

7. = ¢~ A+ Az —yly (15)
As mentioned in [T}, [12], Tihonvon and Fenichel’s theorem is applied here to reduce
the dynamics to the attracting close surface = 1+0(g). Then we obtain the leading
order equation of y

dy B
dr
For convenience, from now on we will still use ¢ to denote 7. Due to the fluctuat-
ing external salinity inputs or the fluctuations in the freshwater flux, ¢ is varying
following S* and can be parameterized as mean part, denoted by {, and a noisy fluc-

tuating process dL;/dt. We thus have the following stochastic differential equation
(SDE)

—(1+ Al —yly+< (16)

dy; = f(y¢)dt 4+ dLy, (17)

where f(y) = —(1 + A|l1l —y|)y + C.
For this stochastic Stommel model of THC, we use model parameters as esti-
mated by Marotzke, as shown in Table 1.

Furthermore, A is calculated as a constant parameter, A ~ 5, and ((s) ~ 1.018.
The stochastic equation above is now

dy: = [—(1+ 5|1 — y|)y + 1.018]dt + dL;.

In fact we will consider an important case of a symmetric a—stable Lévy motion
LY (see definition in the next section):

dys = [-(1+ 5|1 — y|)y + 1.018]dt + dL. (18)

To quantify the impact of non-Gaussian noise on the box model, we will discuss the
mean exit time (MET) for the stochastic system (I8]) for the rest of this paper.
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TABLE 1. The parameters of box model. These parameters were
estimated by Marotzke in 1996.

Parameter Symbol Value
Box volume v 1x10m3
Temperature rebound coefficient Cr 3.17x10 5m3s~1
Salinity rebound coefficient Cs 1.90x107%m3s~1
Temperature dilatancy ar 1.5x1074K 1
coefficient
Salinity dilatancy coefficient as 8x107*K !
Water transport coefficient v 1x109m3s~1
Heat rate of equatorial T 30°C
Heat rate of polar Ty 0°C

3. Numerical schemes of mean exit time from a bounded domain. In this
section, we consider mean exit time (MET) of the stochastic Stommel model ()
with a symmetric a-stable Lévy motion L, with the generating triplet (0,d, vy).
The drift parameter 6 is taken to be zero as it may be absorbed into the deterministic
vector field, variance d > 0 and the jump measure v, (dz) = C’alzldﬁ, where C,, =
ﬁll:((ll——%;)) for 0 < a < 2. A few authors have studied asymptotic mean exit
time for stochastic systems with small a-stable Lévy noise [14] [I6]. But here we
consider a numerical approach for MET in the case of noise of any magnitude.

Given an open bounded interval D, the mean exit time for a solution process of
SDE () starting at y € D is defined as

u(y) 2 Einf{t > 0: y(w) ¢ D}.
As in [10} [I8], the mean exit time u(y) satisfies the following differential-integral
equation:
Auly)= -1, yeD, (19)
u =0, y € D¢, (20)
where the generator A is
d
Au = fly)u'(y) + 5u"(y) + /R\{ }[U(y +2) = u(y) — Iz<ap2u’ (y))lva(dz)  (21)
0
and D¢ =R\ D is the complement set of D.
Then Eq. (2II) becomes

u(y + 2) —u(y) — I{z1<1y2u'(y))
|z +e

d

S (W) + fy)d'(y) +eCa dz (22
R\{0}

fory € D and u =0 for y € D°.

We choose D = (a,b) with a > 0 since y > 0. Translating Eq. ([22) to a slightly

different form: for y € (a, b)

u(y + 2) — u(y) — I{j2 <5124’ (y))
|z Fe

%)+ () +2Co di=-1 (23)

R\{0}
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and for y ¢ (a,b),u(y) = 0.
The positive value of ¢ in (23] is chosen to depend on the value of y.
The following numerical scheme follows [I8]. Because u vanishes outside (a,b), Eq.

. . .. a— b— +oo
(@3) can be simplified by writing [, = [* Y+ f A e

d , , eCqy 1 1
5” (y) + f(y)u (y) + T[(a — y)a + (b — y)a]u(y)+
. "Vuly +2) — uly) — ey’ ®@) (24)

a—y 2|+

for y € (a,b); and u(y) =0 for y & (a,b).
Since u is not smooth at the boundary points y = a,b, we rewrite Eq. (24]) for
ensuring the smooth integrand as

1 1 1

U (W) + fy)d'(y) + E[(a myp T y)a]u(y)Jr
Ty +2) —u(y) "uly +2) —uly) = a2’ (y)
aCa/a_y FEC dy—l—aCa/IH_y FEC dz = —1
(25)
for y > b_T“, and
" / 1.1 1
u’(y) + fy)'(y) + a[(a_y)a + (b_y)a] (y)+
C., "Yuly +2) — u(y) dy+ 8Ca/lﬂryu(y +2) —u(y) — Ia<ap2'@)
bty 2|1+ 2|1+
(26)

for 0 < y < %52, We choose § = min{|a — z|, |b — z|}.

Let us divide the interval [(3a-b)/2, (3b-a)/2] into 2(b— a).J subintervals and define
y; = jh for B‘IT*Z’JSJS%T*“J integer with h = 1/J. We denote the numerical
solution of w at y; by U, and discretize the Eq. (25) with central difference for
derivatives and “punched- hole” trapezoidal rule

U 1—2U +U]+1d Uj_l +€Ca 1 1

5+ Y = U1 | Co + Ui+
h2 (v;) 2h « [(a—yj)o‘ (b—yj)a‘] J
aJ+j bJ—j
Ujpr — U, Ujsrk —U;j — (Ujs1r — U;_1)yx/2h
ECah » CJ+ J + ECah » CJ+ J J J — _1
[k_z‘,:; lyk[ e k_z; 4 lyi [t ]
=aJ—) =aJ+j
(27)

where j = ((b—a)/2)J, ((b—a)/2)J+1, ..., ((3b—a)/2)J—1. The modified summation
symbol Y 7 means that the quantities corresponding to the two end summation
indices are multiplied by 1/2.

Ujfl — 2Uj + Uj+1 d Uj+1 — Ujfl eCy 1 1
2 L TR [<a—yj>a+<b—yj>a] a
bJ—j bJ+j
» Uitk —Uj Ujrk = Uj = Uj+1 — Uj—1)yw/2h
eCohl Y 7 |yk|1+a LieCoh Y 7 e J=-1
k=bJ+j k=aJ—j

(28)
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where j = ((3a —b)/2)J + 1,...,((b —a)/2)J — 2,((b — a)/2)J — 1. The bounded
condition is the value of U; vanish if the index |j] > J.

4. Results and discussions. Now we consider the mean exit time of the stochastic
Stommel model ([I8) proposed in Section 2 from various domain D and for various
« values.

Note that in the model [I8)), y ~ Se — Sp, i.e., y is proportional to the salinity
(or density) difference between equatorial and polar regions in the oceans. Large y
values indicate large density differences. It is the density difference that drives the
thermohaline circulation. So large y values could lead to enhanced thermohaline
circulation. The salinity difference y evolves with time ¢. The mean exit time u(y),
fory € D = (a,b), is the expected duration of time that the initial salinity difference
y will remain in the bounded range D = (a, b).

Case 1: D = (0.3,0.9).

First, we consider the salinity difference y < 1 and take D = (0.3,0.9). Figures
2H4 display the MET wu(y) for various « values. When o« = 0.1, the peak of MET
is about v = 0.0238 at y = 0.4. This says that the initial salinity difference 0.4
will remain the longest time in the salinity difference range D = (0.3,0.9). The
peak of u(y) increases with «, and reaches the largest value around a = 1.0, and
then decreases gradually for a > 1. Note that it takes longer time to escape from
(0.35,0.45) for every . This indicates that the salinity difference tends to remain
within the range (0.35,0.45) for a longer time. For convenience, we say this is a
“salinity-stability” or say the salinity difference range (0.35,0.45) is salinity-stable.
This stability is with respective to the ambient domain D.

Case 2: D = (1.3,1.9).

When the salinity difference y > 1, how about the situation of u(y), MET from
the domain D = (1.3,1.9)? The MET for various « values are in Figures BH7l The
salinity difference range (1.35,1.4) is salinity-stable, i.e., the salinity difference in
this range remain so for a longer time. Comparing with Case 1, the peak values of
u are smaller, although the domain D have the same length in both cases.

From Case 1 and Case 2, we see that there is a stable salinity difference range
for either y < 1 and y > 1.

Case 3: D = (0.4,1.6).

Finally, we take the domain D = (0.4,1.6) which covers both salinity differences
y < 1 and y > 1. Note that the term |1 —y| in (I8]) depends ony > 1 or 0 <y < 1.
Figures BHIT] show the MET for various « values. Observe that the peak value of
MET increases with a. For all these tested o values, MET increases initially and
then decreases, and the turning point is near {y = 1}. The y = 1 is more stable
comparing with other salinity difference levels. In most of the domain D = (0.4, 1.6),
MET is relatively flat, indicating a low variability in salinity difference in the range
04<y<1.6.

In summary, we have considered a simple stochastic box model for THC. It is
described by a SDE with a a-stable Lévy motion. The « values, 0 < a < 2, may
be regarded as the index of non-Gaussianity. When a = 2, the a-stable Lévy mo-
tion becomes the usual (Gaussian) Brownian motion. We quantity some dynamical
features of this stochastic model by computing the mean exit time for various «
values and for different domain D. We have observed that some salinity difference
levels remain in certain ranges for longer times than other salinity difference levels,
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for different « values. This indicates a lower variability for these salinity differ-
ence levels. Realizing that it is the salinity differences that drive the thermohaline
circulation, this lower variability could mean a stable circulation, which may have
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further implications for the global climate dynamics.

FIGURE 2. Mean
exit time wu(y) for
dys = [-(1 +5]1 —

y|)y+1.018]dt +d Ly
at a = 0.1, escaping
from D = (0.3,0.9).
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FIGURE 4. Mean
exit time wu(y) for
dy: = [-(1 + 5|1 —

y|)y+1.018]dt +dL¢
at a = 1.9, escaping
from D = (0.3,0.9).

FIGURE 3. Mean
exit time wu(y) for
dy: = [-(1 +5]1 —

Y

)y +1.018]dt + dL2

at a = 1.0, escaping
from D = (0.3,0.9).

FIGURE 5. Mean
exit time wu(y) for
dy: = [-(1 + 5|1 —

y|)y+1.018]dt +dL¢
at a = 0.1, escaping
from D = (1.3,1.9).
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FIGURE 6. Mean
exit time wu(y) for
dy: = [—(1 4+ 5|1 —
y|)y+1.018]dt +dL¢
at a = 1.0, escaping
from D = (1.3,1.9).

FIGURE 8. Mean
exit time wu(y) for
dy: = [—(1 4+ 5|1 —
y|)y +1.018]dt + dLy
at a = 0.1, escaping
from D = (0.4, 1.6).

FiGURE 10. Mean
exit time wu(y) for
dys = [-(1 +5]1 —
y|)y+1.018]dt +dL¢
at a = 1.0, escaping
from D = (0.4, 1.6).

uy)
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FIGURE 7. Mean
exit time wu(y) for
dy: = [—(1 4+ 5|1 —
y|)y+1.018]dt +dL¢
at a = 1.9, escaping
from D = (1.3,1.9).

FIGURE 9. Mean
exit time wu(y) for
dy: = [—(1 4+ 5|1 —
y|)y +1.018]dt + dLY
at a = 0.4, escaping
from D = (0.4, 1.6).

FiGure 11. Mean
exit time wu(y) for
dys = [-(1 4+ 51 —
y|)y+1.018]dt +dL¢
at a = 1.5, escaping
from D = (0.4, 1.6).
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